
AFWAL-TR-84-3058

ENHANCED THERMAL-STRUCTURAL ANALYSIS BY
INTEGRATED FINITE ELEMENTS

Earl A. Thornton• and

Pramote Dechaumphai

0
Department of Mechanical Engineering and Mechanics
School of Engineering

i Old Dominion University
O) Norfolk, Virginia 23508

0

O October 19840
C\ Final Report for the period June 1, 1982 to December 31, 1982

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

FLIGHT DYNAMICS LABORATORYAF WRIGHT AERONAUTICAL LABORATORIES Best Available Copy
AIR FORCE SYSTEMS COM MAND 4
WRIGHT-PATTERSON AFB, OHIO 45433



NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely related Government
procurement operation, the United States Government thereby incurs no
responsibility nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any way supplied the said
drawings, specifications, or other data, Is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other
person or corporation, or conveying any rights or permission to manufacture,
use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for
publication.

NALD BPAUL, Project Engineer DR FRANK D. ADAMS, Chief
Structural Integrity Branch Structural Integrity Branch
Structures & Dynamics Division Structures & Dynamics Division

FOR THE COMMANDER

R R Jel, e], USAF
Chief, Structures & Dynamics Division

"If your address has changed; if you wish to be removed from our
mailing list, or if the addressee is no longer employed by your organization
please notify AFWAL/FIBEB, W-PAFB OH 45433-6553 to help us maintain a
current mailing list".

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered),

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
AFWAL-TR-84-3058I

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

ENHANCED THERMAL-STRUCTURAL ANALYSIS BY Final Report - June 1, 1982-
INTEGRATED FINITE ELEMENTS December 31, 1982

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Earl A. Thornton, Principal Investigator and F33615-82-K-3219
Pramote Dechaumphai, Research Associate

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASKAREA & WORK UNIT NUMBERS

Old Dominion University Research Foundation A.RE. 61102F

P. 0. Box b369 611-2F

Norfolk, Virginia 23508 2307-N5-24

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Flight Dynamics Laboratory (AFWAL/FIBE) October 1984
AF Wright Aeronautical Laboratories, AFSC 13. NUMBER OF PAGES

Wright-Patterson Air Force Base, Ohio 45433 79
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15, SECURITY CLASS, (of this report)

Unclassified
1Sa. DECL ASSI FICATION/ DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Thermal-structural analysis, thermal-stress analysis, finite elements,
integrated analyses, hierarchical finite elements

"20. ABSTRACT (Continue on reverse side if necessary and Identify by block number)

An integrated finite element approach for enhanced thermal-structural
analysis is presented. The approach employs a common nodal discretization
and seeks improvements in the accuracy by new hierarchical finite element
formulations for the thermal and structural analyses. The effectiveness of
the integrated approach is assessed for four applications with two dimensional
elements. Comparative solutions show the integrated approach provides improve-
ments in the accuracy of temperatures, displacements and thermal stresses.

FORM

DD ,AN 73 1473 EDITION OF I NOV6SS , OBSOLETE Unclassified

L SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

The applications demonstrate the practical importance of having freedom to
refine each analysis independently while maintaining a common discretization.
The study demonstrates that the hierarchical finite element formulations
offers significant potential for the development of a general method for
integrated thermal-structural analysis.

A

Unclassified
SECURITY CLASSIFICATION OF Tu, PAGE(When Daoe Enfered)



FOREWORD

The project discussed in this technical report was performed under

contract F33615-82-K-3219 entitled, "Basic Studies in Thermal-

Structural Analysis of Large Space Structures". The contract was

funded from Task 2307N5 "Basic Research in Structural Dynamics and

Controls" with Dr V.B. Venkayya as the task manager. The document

presents the results of research on integrated thermal structural

analysis with the use of new hierarchical finite element formulations.

The study was conducted at the Department of Mechanical Engineering and

Mechanics, Old Dominion University, Norfolk Virginia. The work was

performed under the direction of Dr Donald B. Paul, AFWAL/FIBEB, Loads

& Criteria Group, Structural Integrity Branch, Structures & Dynamics

Division, Flight Dynamics Laboratory of the Air Force Wright

Aeronautical Laboratories Wright-Patterson AFB.

Best Available Copy1ii



TABLE OF CONTENTS

SECT ION PAGE

I INTRODUCTION 1

1. Background i
2. Obiectives 2
3. Scupe 4

II CONVENTIONAL THERMAL-STRUCTURAL FINITE ELEMENTS 5

1. Thermal Element Formulation 5

1.1 Element Interpolation Functions 5
1.2 Element Matrices and Heat Load Vectors 6

2. Structural Element Formulation 8

2.1 Element Interpolation Functions 8
2.2 Element Stiffness Matrix and Thermal

Force Vector 9
2.3 Element Stresses 12

3. Behavior of Element Thermal Stresses 12

III HIERARCHICAL THERMAL-STRUCTURAL FINITE ELEMENTS 15

1. Integrating Thermal and Structural Analyses 152. Improving Finite Element Approximations 17
3. The Hierarchical Approach 17
4. Comments on the Approach 21

IV NODELESS PARAMETER STRUCTURAL FINITE ELEMENTS 25

1. Rectangular Element Formulation for Linear Temp-
erature Distribution 25

1.1 Element Interpolation Functions 25
1.2 Element Stiffness Matrix and Thermal Force

Vectors 33
1.3 Element Stresses 35

2. Quadrilateral Element Formulation 35
3. Hexahedral Element Formulation 39
4. Formulation for Quadratic Temperature Distribution 44
5. Comments on Formulation 49

V APPLICATIONS 51

1. Free Expansion Plate with Linear Temperature
Distribution 51

V



LIST OF ILLUSTRATIONS

FIGURE PAGE

1 Method of improving thermal-structural solution accuracy . . . 3

2 Two-dimensional conventional bilinear thermal element
interpolation function ........... .................... 7

3 Two-dimensional conventional structural element inter-
polation functions ........... ...................... 10

4 Deficiency of conventional finite element in predicting
thermal stress distribution ....... ................. .. 14

5 Hierarchical integrated thermal-structural analysis ... ..... 18

6 Convergence of finite element approximations .... ......... 20

7 Typical hierarchical interpolation functions for thermal
analysis ........... .......................... .. 22

8 Typical hierarchical interpolation functions for
structural analysis ........ ..................... ... 23

9 Rectangular structural element displacement distributions. 32

10 Four-node isoparametric finite element in global and
natural coordinates ........ ..................... ... 36

11 Quadrilateral structural element displacement distributions.. 40

12 Eight-node isoparametric finite element in global and
natural coordinates ........ ..................... ... 41

13 Comparative displacement distributions for a free
expansion plate with linear temperature distribution ..... ... 53

14 Comparative thermal stress distributions for a free
expansion plate with linear temperature distribution ........ 54

15 Conventional and nodeless parameter finite element
solutions for a fixed end beam with nonlinear temperature
distribution ......... ... ......................... 56

16 Hierarchical thermal-structural analysis of simplified
wing section with aerodynamic heating .... ............ .. 58

17 Thermal-structural analysis of convectively cooled
laser mirror ........... ....................... .. 62

vii



LIST OF ILLUSTRATIONS (Cont'd)

FIGURE PAGE

18 Typical temperature distributions at different mirror
sections ........... ......................... ... 64

19 Comparative transverse displacement distributions
along mirror surface ......... ..................... 65

20 Comparative mirror in-plane stress distributions ......... .. 66

viii



SECTION I

4 INTRODUCTION

1. Background

The determination of the structural response induced by thermal effects

is an important factor in many aerospace structural designs. Extreme aero-

dynamic heating on advanced aerospace vehicles may produce severe thermal

stresses that can reduce operational performance or even damage structures.

The performance of laser devices can be degraded by thermal distortions of

mirror surfaces. The thermal environment in space may cause orbiting

structures to distort beyond operational tolerances. To predict the

structural response accurately, effective numerical techniques capable of

both thermal and structural analyses are required. One technique, the

finite element method, has been found to be particularly well-suited for

such analyses due to its capability to model complex geometry and to perform

both thermal and structural analyses.

In predicting the thermal-structural response, basic thermal elements

with assumed linear temperature distribution are frequently employed. Nodal

temperatures obtained from the thermal finite element analysis are trans-

ferred to the structural finite element analysis for computations of dis-

placements and stresses where elements with linear displacement distribu-

tions are used. This procedure, denoted as the conventional approach, is

shown schematically in Figure 1(a). With the use of the elements with

linear distributions in both thermal and structural analysis, a large number

of elements are normally needed to produce accurate thermal-structural solu-

tions. Often, basic differences in the thermal and structural problems man-

date different analysis models, and the data transfer between the analyses



can become complicated because of the need to interpolate temperatures at

the structural nodes. With increasing structural design complexity and the

need for highly accurate analysis, improvements in finite element methods

are needed to increase the accuracy and efficiency of coupled thermal-struc-

tural analysis.

2. Objectives

To improve the accuracy and efficiency of the finite element method,

development of an approach called integrated thermal-structural analysis was

initiated in References 1-5. The goals of the integrated approach are to:

(1) provide thermal elements which predict detailed temperature distribu-

tions accurately, (2) provide structural elements with improved displacement

and stress distributions which are fully compatible with the thermal ele-

ments, and (3) integrate the thermal loads with the structural analysis to

further improve the accuracy of displacements and stresses. These concepts

are shown schematically in Figures 1(b) and 1(c).

The goals of the integrated approach require developing new thermal and

structural finite elements that can provide higher accuracy and efficiency

than conventional finite elements. The task of developing new thermal ele-

ments with a common structural element discretization was begun in Refer-

ences 1-5. Displacements and stresses based on the new thermal elements

were improved because more accurate thermal loads were provided to the

structural finite element analysis.

Another task of the integrated approach is to develop new structural

elements capable of providing improved displacement and stress distribu-

tions. By integrating these new structural elements with the new thermal

elements developed previously, better thermal-structural solution accuracy

can be obtained.

2
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3. Scope

To further develop integrated thermal-structural analysis, two proce-

dures for developing improved thermal-structural analysis are presented. A

brief review of the conventional thermal-structural finite element formu-

lations is first given in Section II. This section describes element char-

acteristics including some deficiencies which motivated the development of

improved structural elements. The new approaches for improving the accuracy

and efficiency of thermal-structural finite elements are presented in Sec-

tions III and IV. An approach using a hierarchical finite element concept

is introduced in Section III, and an approach using nodeless parameter

structural finite elements is introduced in Section IV. In Section V, some

benefits of utilizing the new integrated thermal-structural approaches are

demonstrated by numerical examples. Section VI discusses the results and

highlights areas for future research.

4



SECTION II

CONVENTIONAL THERMAL-STRUCTURAL FINITE ELEMENTS

The objectives of this section are to briefly describe conventional

thermal-structural finite element formulations and demonstrate the behavior

of thermal stresses obtained. These basic finite element formulations will

be referred to in later sections. For simplicity in understanding the

thermal stress behavior, a rectangular element shape in two dimensions is

used. Details of finite element formulations for general quadrilateral

element shapes appear in Reference 5.

1. Thermal Element Formulation

1.1 Element Interpolation Functions

The element temperature distribution for a conventional bilinear four-

node thermal element in local Cartesian coordinates is expressed in the

form,

T(x,y,t) = [NI N2  N3  N4 ] T = [NT(xy)]{T(t)} (1)

IT41

where Ni and Ti, i = 1,4 are the element interpolation functions and

the time dependent nodal temperatures, respectively. For a rectangular

element, the element interpolation functions are defined by,

N1  ) ( I - 1)(l -Y) N2 =: x(I -XY)
a b a b

N3 :N4 y N 1 (- X) y (2)
a b a b

5



where a and b are the element dimensions in the x and y directions.

With these element interpolation functions, an element temperature distri-

bution varies bilinearly as shown in Figure 2.

1.2 Element Matrices and Heat Load Vectors

Finite element (F.E.) formulations for nonlinear, transient thermal A

problems can be derived from the governing heat conduction equation with

radiation boundary conditions by the method of weighted residuals (Reference

6). In general, the element temperature T(x,y,t) and temperature

gradients are expressed in the form

T = [NT]{T(t)}e (3a)

{aT/ax) [BT]{T(t)} (3b)

where {T(t)}e denotes a vector of element nodal temperatures as a function

of time. For simplicity, conduction with only specified surface heating and

radiation heat transfer will be considered. Finite element thermal analy-

ses for other heat loads such as internal heat generation and surface con-

vection are presented in References 1-2. For transient thermal analysis the

equations for a typical element are

[C]e{T}e + [Kc]e{T}e + [Kr]e{T}e

S{Qqe {Qr1 (4)

6
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where the element matrices are expressed in terms of integrals over an ele-

ment volume Ve and surface Se* The element equations are

T

[Cle = fVe pC[NT]T[NT]dV (5a)

[K f Ve [BT]T[k][BT]dV (5b)

Se

[K ]l {Te} = fSeaT [1N TI dS (5c)

{Qqje = fSe q[NT]TdS (5d)

Qr~e = fSe aqr[NT]T dS. (5e)

All thermal parameters may be temperature dependent in general, but are

assumed constant herein.

2. Structural Element Formulation

2.1 Element Interpolation Functions

The two-dimensional conventional bilinear four-node structural element

has two in-plane displacements u and v which may vary with the element

local coordinates x,y and time t. Element displacement distributions are

assumed in the form,

8



Su

VI

U2
{6 (x,y~t) N1 0 N2 0 N3 0 N4.0] V

=(,t L0 N, 0 N2  0 N3  0 N4J U3 [N s] (6)

V3

V4+

where Ni, i = 1,4 are the element displacement interpolation functions

which have the same form as for the conventional finite element temperature

interpolation functions shown in Equation 2. Typical element displacement

distributions are shown in Figure 3.

2.2 Element Stiffness Matrix and Thermal Force Vector

With the assumed element displacement distributions shown in Equation

6, the element strain-displacement relations can be written as,

DuE

x ax

{e} = a•Y= [Bs]{16 (7)

ay

Y xy u +avYxy, y @

By ax

where [Bs] is the strain-displacement interpolation matrix. For quasi-

static analysis, the principle of minimum potential energy is applied to

derive the element equations. Typical element equations may be written in

the form

[Ks]{6} = {FT} (8)

9
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Figure 3. Two-dimensional conventional structural element
interpolation functions.
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where [Ks] is the element stiffness matrix, and {FT} is the equivalent

nodal thermal load vector. These matrices are expressed in the form of

integrals over the element volume V as

[KS] = fV [BS]T[D][BS]dV (ga)

{FT} = V [BS ]T [D]{(T(x'y't)-Tref)dV (9b)

where [D] is the elasticity matrix defined by (plane stress),

"1 V 0

[D] 1 0 (10)
j_2 0 0 1--

L ~2j

where v is Poisson's ratio. The vector {a} contains the thermal expan-

sion coefficients given by (plane stress)

=fcz (11)

0jI

T(x,y,t) is the element temperature distribution defined in Equation 1, and

Tref is the reference temperature for zero stress. The elasticity matrix

[D] and the vector of thermal expansion coefficients shown in the above

equations can be used for plane strain by substituting E/(1-v 2 ) for E,

v(1-v) for v, and (1+v)a for a.

11



2.3 Element Stresses

After the element matrices shown in Equation 8 are assembled and the

element nodal displacements {c} are computed, the element stresses can be

obtained using the thermo-elastic stress-strain relations,

x

{} : oyj = [D]j [Bs]{1} - {a}(T(x,y,t) - Tref) . (12)

xy,

3. Behavior of Element Thermal Stresses

The behavior of the conventional element thermal stresses can be ex-

plained using the thermo-elastic stress-strain relations shown in Equation

12. These element stresses may be simply written in the form of the differ-

ence between element total strains and element thermal strains as

a x Cx - a (T-T ref)

= [D] 6 - a (T-Tref) (13)
T ~ Y0

xy x

For the bilinear element displacement distributions shown in Equation 6 the

total strain xcl the derivative of the u-displacement with respect to x,

is constant in the x-direction. But the thermal strain a(T-T ref) which

varies directly with the element temperature distribution is linear in the

x-direction. Because the total strain and the thermal strain have different

polynomial orders, unrealistic element thermal stress distributions can

result.

12



To examine the conventional finite element thermal stress behavior, a

fundamental two-dimensional thermal stress problem is analyzed. Figure 4(a)

shows a plate free to expand with a prescribed linear temperature distri-

bution. The plate is modeled by: (1) one conventional finite element, and

(2) four equal conventional finite elements. Since the plate is subjected

to a linear temperature distribution and is free to expand, all stress com-

ponents should be zero. Figure 4(b) shows the actual distributions of the

stress component ax obtained from these two finite element models. The

stress distributions vary linearly within the elements and are maximum at

the element boundaries, although the stresses at the element centroids are

zero. By increasing the number of elements used, the element stress distri-

butions are improved, but the stress discontinuities across the element

boundaries still appear. Conventional finite elements provide accurate

stresses at the element centroids in this simple example. However, the

element centroidal stresses are not always conservative estimates of

stresses in thermal stress problems as will be shown by examples in Section

V.

It should be emphasized that the deficiency of the conventional finite

element in predicting unrealistic element thermal stress distributions is

because the element total strain contains a mechanical strain term one order

lower than the thermal strain term. Thus, to improve the element stress

distributions, the element displacement distributions should vary

quadratically so that the element total strain is linear as the thermal

strain.

13
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Figure 4. Deficiency of conventional finite element in predicting
thermal stress distribution.

14



SECTION III

HIERARCHICAL THERMAL-STRUCTURAL FINITE ELEMENTS

1. Integrating Thermal and Structural Analyses

To more fully develop the potential of the finite element method for

thermal-stress analysis, the concept of integrated thermal-structural analy-

sis was proposed in Reference 1. The approach focuses on aerospace appli-

cations where often thermal and structural models differ because of differ-

ent analysis requirements. The objectives of the approach are to provide

more efficient coupling between the thermal and structural analyses and to

improve the accuracy of each analysis particularly the thermal-stress analy-

sis. The basic philosophy of the approach is that optimum accuracy and

efficiency will be achieved by working from a common geometric model and

performing the analyses with the finite element method. The technology for

creating geometric models within computer aided design is relatively mature

and is a natural approach for initiating many interdisciplinary analyses

including thermal and structural analyses. Modern computer software such as

the popular PATRAN-G program are based on the concept of first developing a

geometrical model and then creating the finite element discretization. The

finite element method is the logical choice as the analysis method because

it is inherently based on geometry.

The integrated thermal-structural approach advocated herein is based

upon using the same geometric model for both analyses with a common finite

element nodal discretization. The thermal and structural models are per-

mitted to differ because heat transfer and structural response may depend on

different characteristics of the system. The heat transfer problem may

mandate modeling features such as insulation or cooling passages. The

15



structural response, however, will not depend on such non-load bearing

features of the thermal model. Only in the case of conduction heat transfer

with simple boundary conditions can the thermal and structural models act-

ually be identical. Thus an integrated analysis approach must permit the

use of different finite element models for the thermal and structural analy-

ses.

A second consideration in developing integrated thermal-structural

analysis is to recognize that temperature and stress distributions may be

significantly different. Regions of high temperature gradients do not

always correspond to regions of high stress gradients. Temperatures may

vary (or not vary) significantly over a structure due to radiation boundary

conditions or convective cooling. Stresses may vary significantly in a dif-

ferent region of the structure because of boundary constraints and geometri-

cal effects that cause stress concentrations. Moreover, the locations of

the regions of high thermal or stress gradients are not known apriori. Thus

an integrated thermal-structural analysis must have the capability for

independently refining the thermal and structural analysis to capture these

gradients. The approach advocated for refinements is based on the use of

finite element nodeless variables and hierarchical interpolation functions.

Further details of this approach are given in Section III.

A third important consideration in integrated thermal-structural analy-

sis is effectively coupling the analyses. The details of the temperature

variations obtained in the thermal analysis should be employed consistently

in the structural analysis to obtain the true distributions of displacement

and stress. The finite element method permits consistent coupling through

equivalent nodal thermal force integrals. The integrated thermal-structural

16



analysis approach consistently employs these integrals with the temperature

representations from the thermal analysis.

2. Improving Finite Element Approximations

Three basic approaches for improving the quality of finite element ap-

proximations are to:

(1) introduce additional elements of a smaller size in an area of

significant dependent variable variation. This approach is called

the h method where h denotes the element size, and it is the

standard approach used for the solution of practical problems via

standard production codes.

(2) use the same size and definition of elements but increase the

order of the interpolating polynomials. This approach is called

the p method where p denotes the order of the element poly-

nomials. With this approach additional degrees of freedom are

introduced via nodeless variables. The interpolating polynomials

progress in order from linear to quadratic to cubic, etc. and are

called hierarchical because their contributions to the accuracy of

the solution will be of diminishing importance (Reference 7).

(3) use both h and p refinements simultaneously.

The h and p methods for improving finite element approximations are

compared schematically in Figure 5.

3. The Hierarchical Approach

The hierarchical approach of finite element analysis has been used pre-

viously to seek converged solutions for structural mechanics problems (Ref-

erences 8-10). Comparisons of finite element convergence via the h

approach (mesh refinement) and via the p approach (increasing polynomial

17
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order) are made in Reference 9, and the p approach is found to be

superior. Reference 10 advocates the general adoption of the hierarchical

approach and addresses questions of adaptive refinement and error estima-

tion.

The hierarchical finite element approach for integrated thermal struc-

tural analysis uses a common discretization for the analyses and seeks

improvement in the effectiveness of the analyses by: (1) improving the

accuracy of the thermal analysis by using hierarchical temperature interpol-

ation functions to converge the thermal solution, (2) using the converged

temperature distribution to compute improved finite element equivalent nodal

forces, (3) using hierarchical displacement functions (not necessarily the

same order as the temperature interpolation functions) to converge the

structural solution. The hierarchical integrated thermal-structural analy-

sis is shown schematically in Figure 6.

In the thermal analysis, element temperatures are taken in the form

P T

T(xyt) = E [Ni(x,y)]{Ti(t)} (14)
i =1

where [NT(x,y)] denote temperature interpolation functions, and {Ti(t)}

denote vectors of unknown temperatures. For i = 1, the first term on the

right hand side of Equation 14 includes the first order bilinear interpol-

ation functions, and the vector {T1 } denotes the nodal temperatures. For

i > 2 the next terms represent the hierarchical interpolation where the

superscript i denotes the order of the interpolating polynomial varying

from i = 2 to the highest order for the thermal analysis, PT' and the

vectors {T i} for i > 2 denote the nodeless variables associated with each

19
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interpolating polynomial. Typical hierarchical temperature interpolating

polynomials and nodeless variables are shown in Figure 7.

In the structural analysis, element displacements are taken in the form

SPS

{u(x,y,t)} = 1 [N•(x,y)]{ui(t)} (15)*~i =1

where [Nl(x,y)] denote displacement interpolation functions, and fui(t)}

denote vectors of unknown displacements. If i = 1, the first term on the

right hand side of Equation 15 denotes the first order interpolation func-

tions; the next terms represent the hierarchical displacement interpolation

where i denotes the order of interpolating polynomial. For i > 2, the

vectors {ui(t)) represent the nodeless structural variables. Note that

the highest order PS for the structural analysis may differ from the high-

est order in the thermal analysis PT to permit optimization of each solu-

tion independently. Typical hierarchical displacement interpolation poly-

nomials and nodeless variables are shown in Figure 8.

4. Comments on the Approach

The hierarchical approach for integrating thermal-structural analysis

is quite general and has significant potential for further development. The

approach is based on using well-known finite element methodology principally

from structural analysis. For example, the interpolation functions shown in

Figures 7-8 are the well known Serendipity functions (Reference 6). How-

ever, a significant effort is required for the development of optimum com-

puter programs to implement the concept. In this study only very primitive

21
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computer codes were developed for the numerical applications. No effort was

made to develop efficient general codes because of the modest funding of

this study. Instead exploratory programs were written to demonstrate the

concept. For instance, the highest order interpolation functions implement-

ed was quadratic.

24



SECTION IV

NODELESS PARAMETER STRUCTURAL FINITE ELEMENTS

The development of a new structural element using the nodeless param-

eter approach is presented in this section. The nodeless parameter approach

can reduce thermal stress discontinuities between elements that are produced

by conventional finite elements as demonstrated in Section II.3. The

approach improves stress distributions without adding additional element

unknowns. The formulation for a rectangular element with linear temperature

distribution is first presented. The approach is then extended to quadri-

lateral and hexahedral elements. Finally, the formulation for a rectangular

element with quadratic temperature distribution (PT = 2) is derived to

demonstrate the approach for hierarchical thermal element temperature

interpolation polynomials.

1. Rectangular Element Formulation for Linear Temperature Distribution

1.1 Element Interpolation Functions

For the one-dimensional nodeless parameter structural element presented

in Reference 5, the element displacement distribution was derived from the

governing differential equation of a thermo-elastic member. The displace-

ment {6} is written as the combination of the conventional linear dis-

placement distribution and a displacement distribution associated with ele-

ment nodal temperatures,

{-- [Ns]{6} + [N']{T - Tref} (16)

where [Ns] and {6} are the conventional element displacement interpo-
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lation matrix and the element nodal displacement vector, respectively. In

the second term, E-N] represents the nodeless parameter interpolation

matrix, and {T} is the vector of element nodal temperatures. The nodal

temperatures are known and have the role of parameters in the structural

analysis. For two- and three-dimensional problems, it is not possible to

derive the element displacement distribution in a simple closed form solu-

tion from the equations of elasticity. However, the idea of assuming the

element displacement distribution in the form of Equation 16 can be used

where the nodeless parameter interpolation matrix [N] is to be determined

by an alternate approach.

For a two-dimensional four-node structural element, the element dis-

placement distributions in the form of Equation 16 are,

v1

~ u(x$Y)~ [N 0 N2  0 N3  0 N4  0 1 2
S-v(x,y)f Lo N, 0 N2  0 N3  0 NL u3

v3

U4

V4

T1 - Tref

+ Nul Nu2 Nu3 Nu4 T2 - Tref (17)

Nvl Nv2  Nv3  Nv4  T3 - Tref

T- Tref
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where u and v are the element in-plane displacement distributions in

local coordinates x and y.

For a rectangular element, the first term on the right hand side of

Equation 17 represents the bilinear displacement distributions which are

given by Equation 6 and are illustrated in Figure 3. With the assumed dis-

placement distribution in the form of Equation 16, the element strain-dis-

placement relations are

{ [} = EBs] {6} + [B] {T - Tref} (18)

where [B] is the nodeless parameter strain-displacement matrix that is to

be determined. Using the thermo-elastic stress-strain relations, the ele-

ment stresses are,

{fa} = [D] {[Bs] {1} + [B] {T - Trefi - {a} (T(x,y) - Tref)} (19)

In the case of the plane stress, for example, the above element stresses can

be written in terms of strains as,

a C + L - a (T - Tref)

a - [D] £ + -y - a(T- Tref) (20)

Y Y + Y - 0

xy Yxy Yxy
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where c 9y and 7--xy are the strain components corresponding to the

additional nodeless parameter interpolations introduced in Equation 16.

As mentioned in section 11.3, the discontinuity of stress ax between

elements is produced because the thermal strain aT is one order higher

algebraically than the strain cx" The stress discontinuity can be reduced

by forcing the additional strain term cx to have the same algebraic order

as the thermal strain aT, i.e.

x (x,y) = a(T(x,y) - Tref) + C (T(x,y) - Tref) (21)

where C is a constant. This expression can be written explicitly as,

T, - Tref

[-uI .. u2 -u3 -u4 1  T2  - Tr ef

L9 x ax ax ax] T3  - Tref

T4 - Tref

Ti - Tref

a (1- X)(1-) (1x- Yy ( a x y T2 - Tref

a b a b a b a b] T3  - Tref

T4 - Tref

Ti - Tref

T2 - Tre
+ [a, b, cI dd] ref (22)

T3 - Tref

- Tref
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where N--ui, i = 1,4 are the nodeless parameter u-displacement interpola-

tion functions shown in Equation 17. These interpolation functions are

unknown; however, they may be determined by applying the method of undeter-

mined coefficients to the above equation. For example, by comparing the

coefficients of TI:

aNul
-. a (1 -x) (1 - Y) + ai

ax a b

a solution of the nodeless parameter interpolation function N ul is,

ul a (x ) (1 - --Y) + aix + a2
2a b

where a, and a2 are constants to be determined by requiring that the

displacement u be continuous between elements. To satisfy this continuity

requirement, the above nodeless parameter interpolation function must vanish

at x = 0 and x = a, i.e.

Nul(X = O,y) = 0

(23)

Nul(x = a,y) = 0

With these two boundary conditions the constants a, and a2 can be deter-

mined and the nodeless parameter interpolation function is obtained as,
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N) - (x _ x (24)
U. 2 b a

Similarly, the unknown nodeless parameter interpolation functions Nu2, Nu3

and Nu4 can be derived using the boundary conditions given in Equation 23.

Therefore, the element u-displacement distribution shown in Equation 17

becomes

u1  T1  - Tref

u(x,y) = [N1  N2  N3  N,] U2  + [N-u _Nu2 Nu3 Nu4] T2  - Tref

U3  T3  - Tref

u4. T4 - Trefi

or

Ul
u ( X , y ) = ( 1 - - -X ) ( 1 - Y ) _ x ( i - Y ) _ _ 1 - -X ) _y U 2

a b a b a b a b Iu3

U4

+ - (x - x)1 - Y) - a (x - x2)(I- _Y)
2 a b 2 a b

T, - Tref

- - (x _ _a_ (x _ x2 _y T2  - Tref (25)
2 a b 2 a b T3  - Tref

T4 - Tref

For an isothermal problem, the element u-displacement distribution

shown above reduces to the bilinear distribution as assumed in the conven-

tional element. A comparison of the u-displacement distributions for a
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bilinear conventional element (Equation 6) and a nodeless parameter element

(Equation 25) is shown in Figure 9(a).

The nodeless parameter interpolation functions for the element v-dis-

placement, Nvi, i = 1,4, can be derived using the same procedure. The

appropriate boundary conditions which preserve the element v-displacement

continuity are,

Nvi (x,y=O)= 0

(26)

Nvi (x,y=b) = 0

The element v-displacement distribution with nodeless parameters is

VI

v(xy) Y) xy 1 X) . V2
L a b a b a b a b II3

V4

2 a b 2 a b 2 a b

Tj - Tref

X(I - x) (y y2) T2 - Tref (27)

2 a b T3 -Tref

T4 - Tref
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The element v-displacement distribution is compared with the bilinear con-

ventional element distribution in Figure 9(b).

1.2 Element Stiffness Matrix and Thermal Force Vectors

Finite element equations and element matrices can be derived by apply-

ing the principle of minimum potential energy (Reference 6). For simplicity

in the derivation here, the effects of external applied forces are not in-

cluded; only thermal effects are considered.

The total potential energy is represented by the internal strain energy

written in the form,

1 f [C - CO] {4} dV (28)
2 V

where V is the element volume, and {o} denotes the vector of stress com-

ponents; [c] denotes the row matrix of the total strain components shown

in Equation 18, and [co] denotes the row matrix of the thermal strain com-

ponents. For example, the vector of thermal strain components for the plane

stress problem is,

S(T T Tref)

{co} = {fa (T - Tref) (T Tref) (29)

0

Using the stress-strain relations,

{} [D] e- o (30)
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the total potential energy, Equation 28, becomes

12 fV [E - C0o ] [ { - eo} dV (31)
2 V

By substituting the strain-displacement relations for the nodeless parameter

element, Equation 18, the total potential energy can be written in the form,

TI = 1(6}T fV [Bs] T[D][Bs]dV {6} - {6}T f [Bs]T[D] {JO} dV
2 V

+ 2 [E][D] {E} I dV + 161 f [B]T [D][B] IT-Tref} dV) (32)+ 21 V[o[] o V + {} LS reV

The element equilibrium equations are then derived by performing the mini-

mization of the total potential energy with respect to element modal

unknowns. The equilibrium equations have the form,

[K] {6} = {FTI - {FTI (33)

where [Ks] and {FTI are the element stiffness matrix and the equivalent

nodal thermal load vector, respectively. These two element matrices are

identical to those obtained from the conventional element formulation given

in Equation 9a and 9b, respectively. The vector IFT1 is produced by the

element nodeless parameter interpolation functions and is given by

I{TI = f [Bs]T [D]E-] {T-TrefI dV (34)
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As shown by the element equilibrium equations, the nodeless parameter

approach does not require extra element unknowns or modify the stiffness

matrix, however, an additional element nodal force vector {IFTI is intro-

duced. Due to this additional element nodal force vector, nodal displace-

ments computed are different in general from the conventional finite element

sol ution.

1.3 Element Stresses

Once element nodal displacements {6} are obtained, element stresses

can be computed from the thermo-elastic stress-strain relations,

fa} = [D] {[BS] {6M + [B] {T-T - {a} (T-Tref)1 (35)

2. Quadrilateral Element Formulation

A two-dimensional, four-node element with a general quadrilateral shape

is shown in Figure 10(a). In general, the finite element matrices are

integrals over the element volume, and the integrations are performed using

Gauss quadrature in the ý-n coordinates shown in Figure 10(b). The ele-

ment interpolation functions are defined in terms of the natural coordinate

variables & and n. Details of the coordinate transformation for conven-

tional interpolation functions are found in Reference 6.

To obtain the nodeless parameter interpolation functions in terms of

the natural coordinates ý and n, the nodeless parameter interpolation

functions for the rectangular element given in Equations 25 and 27 are used.

The relations between the local x-y coordinates (Figure 3) and the C-n

coordinates (Figure 9b) for the rectangular element are
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(b) Natural coordinates

Figure 10. Four-node isoparametric finite element in global
and natural coordinates.
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x 1 + (36a)
a 2

and = (1 + n) (36b)

b 2

With these relations, the element displacement distributions become,

ull Ti - Tref

u(, n) = [NI N2 N3 N4] U2 + [Nu.1 Nu2 Nu3 Nu4 ] T2 - Tref (37a)U3 T3 - T ref
U4 T4 - Tref

IVl Ti - Tref
v(•,n) : IN1 N2 N3 Nit] +2 - -- T2 - 3b

+ [Nvl Nv2  Nv3  Nv4 ] T ref (37b)V 2 
T3 - Tref

V4 T4 - Tref

where Ni, i = 1,4 are the conventional bilinear interpolation functions,

N, = 1 1- )(1-rU ) N2  1 - (1+ &)(l-n)
4 4

(38a)
1 1

N3  -(1+ )(l+n) N4  - (1- �)(1+n)
4 4

and Nui and Nvi, i = 1,4, are the nodeless parameter interpolation

functions corresponding to the u- and v-displacements, respectively,
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2N -u2 a(l_- 2 )(l-n)
ul 16 a(l-• 2 )(l-n) u2 16

(38b)

- 3 a a(1E 2 ) (1+n) NU4 - a a(l-_2 ) (1+n)
16 16

N-- a b(14)(1 2 ) NV2 - a b(1+C)(1-n 2 )

V 16 16

(38c)

Nv3 a- - b(1+C)(1-n 2 ) Nv4 =-16 -)(-n2)
16 1

Note that these nodeless parameter interpolation functions depend on the co-

efficient of thermal expansion, the dimensions of the element and the

natural coordinates ý and n.

For an element with general quadrilateral shape, it is not possible to

derive the nodeless parameter interpolation functions as for the rectangular

element given by Equations 38b-c. However, the nodeless parameter interpo-

lation functions obtained for rectangular element can be modified and used

approximately for the quadrilateral element in the following forms,

ua _ (1- 2 ) -_ £12 (I-J2)(lJn)
16 u2 16

(39a)

Nu3  a £34 (I-& 2 )(l-+n-) Nu434
16 16

38



_~~~ 
2)i• (~2

Nv T6= 1623 (l+_)(l-fl 2) (3 9b)

(3 9b)

v3 - - C1-j

16 16

where Iij, ij = 1,4, are the lengths of the element edges between nodes

i and j. With the above nodeless interpolation functions, the element

displacement distributions given by Equation 37 are shown in Figure 11.

3. Hexahedral Element Formulation

Figure 12 shows an eight-node hexahedral element in both global and

natural coordinates. In the thermal analysis, the conventional element

temperature distribution (PT 1 1) is expressed in terms of the natural

coordinates t, n and c in the form (Reference 6),

8
T(E,n,c,t) = [NT(F(,n,c)] {T(t)} N E NiT. (40)i=1 11

where Ni, i=1,8, are the element temperature interpolation functions

given by

N I (1+ ui)(1+nni)(1+C¢i) (41)i=8

and Ti are the element nodal temperatures which may be a function of time

t.

The congruent structural element at each node has three displacement

unknowns, u, v, and w in the directions of the element local coordin-
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Figure 12. Eight-node isoparametric finite element in global
and natural coordinates.
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ates x, y and z, respectively. The nodeless parameter structural ele-

ment can be constructed by first writing the three displacement distribu-

tions in the following forms,

u = [Ns] {u} + [Nu] {T-Tref} (42a)

v = [Ns] {v} + [Nv] {T-Tref} (42b)

and w = [Ns] {w} + [Nw] {T-Tref } (42c)

where [NS] is the row matrix of the conventional displacement interpola-

tion functions given by Equation 41. [N-u ], [_ ] and [- w] are the node-

less interpolation matrices to be determined, and {T} is the vector of

element nodal temperatures shown in Equation 40.

To determine the nodeless interpolation functions, the procedures

described in sections IV.A and IV.2 are employed. Using the assumed element

displacement distributions in the form of Equation 42, the element strain-

displacement and stress-strain relations are formulated. To reduce the ele-

ment stress discontinuity, the strains associated with the nodeless param-

eter interpolation functions are forced to have the same algebraic order as

the thermal strains. These conditions and the element boundary conditions

required to preserve the element displacement continuity lead to the deter-

mination of the unknown nodeless parameter interpolation functions. The

nodeless parameter interpolation functions corresponding to the u, v and
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w displacements are:

Nul = - Nu2  £- 912 (1-_ 2 )(1-n)(1-_)
32

- - a
Nu3 = - Nu4  - - X34 (i-_ 2 )(1+n)(i-;)

32

(43a)

- - a
NU5 = - Nu6 -- J£56 (I-_ 2 )(1-n)(l+R)

32

- - a
"Nu7 = - Nu8 -- 08 £ 18 2

32

Nvl = - Nv4 0 R14 (1-&)(l-n2)(I-•)
32

Nv2 = - Nv3 -• 23 (1+)(l-n2 )(1-)32

(43b)

-14 -1n aC
Nv5 = - Nv8  - £58 (i-5)(l-n2 )(1+';)

32

Nv6  - Nv 0 k7 (1+E) (1-n 2 )(l+C)
32
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Nwi ` - Nw5 15£• R (l-C)(1-n)(1-C2 )

Nw2 = - Nw6  = 2 £26 (l+q)(1'n)(1-_2 )

(43c)

Nw3 = - Nw7 = - £37 (l+I)(l+n)(l- 2 )
32

Nw4= - Nw8  = 48 (1-ý)(+n)(1- 2 )
32

where Xij, ij = 1,8, are the length of element edges between nodes i

and j.

Element matrices can be derived as described in section IV.1.2 and the

element equations are obtained in the form of Equation 33. Since each node

has three displacement components, there are 24 unknowns for an element

which is equal to the number of unknowns used in the conventional 8-node

element. After the nodal displacement components are computed, the element

displacement distributions and the element stresses are obtained using

Equations 42 and 35, respectively.

4. Formulation for Quadratic Temperature Distribution

In the thermal analysis, a two-dimensional element with quadratic temp-

erature distribution can be constructed using the hierarchical approach. As

described in Section 111.3, the hierarchical element temperature distribu-

tion (PT = 2) is expressed in the form,
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TI T5

T = [NI N2  N3  N4] T2  + [N5  N6  N7  N8 ] T6 (44)
T3  T-7

T4  T8

where Ti, i = 1,4 are the element nodal temperatures and Ti, i = 5,8

are the nodeless variables. For a rectangular element, the element interpo-

lation functions Ni, i = 1,4 are the same as for the conventional bi-

linear four-node element given in Equation 2. The interpolation functions

Nil i = 5,8 for the nodeless variables are given by,

N5 = 4 x (1 - _X)(1- Y) N6 = 4 x Y a Y)

a a b a b b

(45)

N7  = 4 ( -- x) N8  = 4 (1 --- x)y(I Y)
a a b a b b

To formulate a nodeless parameter structural element for the quadratic

temperature distribution, the procedures described in Section IV.1.1 are

employed. The structural element displacement distributions are first

written as the combination of the bilinear distribution and the distribution

associated with the element temperature,
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Ti- Tre_

T2 -Tref

Uj T3 -Tref

u : [NI N2  N3  U2] u + [Nul Nu2 NO3 Nu4 Nu5 Nu6 NO7 Nu8] T4 -Tref
U3 T5
04 T 6

TI

T8

(46)

Ti -Tref

T2 -Tref

vi T3-Tref

v [N N2  N3  N + Nv3 Nv4 Nv5 Nv6 N 7 NV81 -Tref
V3 T5

V4 T6

8T!

T8

where Nui and Nvi, i = 1,8 are the nodeless parameter interpolation

functions to be determined. The strain-displacement and the stress-strain

relations shown in Equations 18 and 19 are then formulated. To reduce the

stress discontinuity between elements, the strains produced by the nodeless

parameter displacement distributions are forced to have the same order as

the thermal strains. As an example for plane stress, this requirement for

the u displacement yields
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Ti -Tref

T2 -Tref

T3 -Tref
-u -- - -- -- - -- -- ] T4 -Tref

ax ax ax ax ax ax 3x ax
T5

T6
T-7

TB

: • [(l X)( - Y X_(I - Y ) x y ( - .xx) y 4 -x (1 - x ) ( - Y

a b a b a b a b a a b

Ti -Tref

T2 -Tref

T3 -Tref

4 2 . ' Y) 4 1 (1- x) y 4 (1- x) y (1- Y)] T.-Tf
a b b a a b a b b

T5
T6

T,7

T8

Ti -Tref

T2 -T ref

T3 -Tref

+ [ a, b, c, d, e, f1  gi hi] T4-Tref (47)

TB
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where the coefficients in the row matrix of the second term on the right

hand side of the equation are constants. Using the method of undetermined

coefficients and imposing the conditions of displacement continuity require-

ment between elements, the unknown nodeless parameter interpolation func-

tions Nui' i = 1,8 are determined. The nodeless parameter interpolation

functions corresponding to the u and v displacements are,

= ~Nu = (x- x2) (1- Y)
Nui = _ Nu2 =2Y

2 a b

T-Na X2 yNu3 = - Nu4 = - (x- --
2 a b

u = 4a (-ix+ _) x_6 2a 3a2  b

-Nu6 = 4a(- +-- ) Y(I )2 2a b b

u7 x x2  x3

6 2a 3a 2  b

2 2a b b
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:- = 4 ,(1-I) (y y2 )
Nv -Nv 4  2 a b

Sx (.x x y2)

v2 v3 2
2 a b

"v5 = 4ý x ýl- x
a a 2 2b

Iv6 = 4a• _x(_ + Y_ -.. _)
a 6 2b 3b2

WO7 4=4 x X( x) (_ _ 2 +
a a 2 2b

lv8 =4a (1- ..x) (- y + y2 -y3_

a 6 2b 3b2

5. Comments on Formulation

For the two-dimensional element described in Section IV.l, the nodeless

parameter interpolation functions were obtained for a rectangular element.

For a general quadrilateral element, the nodeless parameter interpolation

functions do not appear to be derived easily. The nodeless parameter inter-

polation functions for rectangular element were modified and used approxi-

mately for a quadrilateral element. For this reason, the quadrilateral

nodeless parameter element (Equations 37-39) will provide maximum perform-

ance if the element shape is close to rectangular.
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Figure 9 shows that the nodeless parameter interpolation functions are

not geometrically isotropic; the functions depend on the element orienta-

tion. This means that care must be taken in element nodal numbering to en-

sure compatibility of displacements at element interfaces. This lack of

geometric isotropy restricts the generality of the element formulation. The

element displacement and stress distributions compared to the conventional

element solutions may not be improved when this situation occurs and further

investigation is required to evaluate the element performance under these

conditions.
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SECTION V

APPLICATIONS

To demonstrate the capabilities of the hierarchical and the nodeless

parameter finite elements described in Sections III and IV, four thermal-

stress problems are analyzed: (1) a free expansion plate with linear

temperature distribution, (2) a fixed end beam with quadratic temperature

distribution through the beam depth, (3) a simplified wing section with

aerodynamic heating, and (4) a convectively cooled laser mirror. In each

problem, benefits of utilizing the hierarchical and nodeless parameter

finite elements are demonstrated by comparison with results from

conventional finite elements and, where possible, analytical solutions.

1. Free Expansion Plate with Linear Temperature Distribution

Both hierarchical and nodeless parameter finite elements are used for

the structural analysis of the free expansion plate with linear temperature

distribution (Figure 4(a)) as described previously in Section 11.3. The

plate is modeled by: (1) one conventional finite element, (2) one nodeless

parameter finite element, and (3) one hierarchical finite element (Ps = 2).

To illustrate the performance of these finite elements, the analytical solu-

tions for displacements and stresses were derived. Since the plate is sub-

jected to a linear temperature distribution and is free to expand, all

stress components are zero. With the linear temperature distribution in the

x-direction, the analytical solution for the displacement are:

u = a x T, + a_ (x 2 - y2 ) (T2 - TJ) (48a)
2a
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and v = ay TI + 2 axy (T2 - Tj) (48b)
a

where a is the thermal expansion coefficient of the plate; T, and T2

are the temperatures along the edges x = 0 and x = a, respectively.

Figure 13 shows the comparative u-displacement distributions for the

analytical solution and the three finite element solutions along the edges

y = 0 and y = b. Since the hierarchical element with PS= 2 uses

quadratic displacement distributions, the displacement solutions obtained

are exact. At y = 0 the computed nodal u-displacement at x = a from all

three finite element models are exact; however, the conventional finite

element is unable to provide a realistic displacement distribution for 0 <

x < a. Similarly, along edge y = b, the conventional finite element

solution tends to average the true displacement distribution whereas the

nodeless parameter element gives excellent agreement with the exact

solution.

Element stress distributions ax along the edge y = 0 and a alongx y

the edge x = 0 obtained from the three finite element models are shown in

Figure 14(a) and (b), respectively. The hierarchical element provides exact

zero stresses throughout the plate. Due to the linear temperature distri-

bution in the x-direction, an unrealistic distribution for ax is obtained

from the conventional element. The nodeless parameter element improves this

stress distribution significantly and clearly demonstrates the capability of

providing more realistic stress distributions.

2. Fixed End Bean with Quadratic Temperature Distribution

A beam with a symmetrical quadratic temperature distribution through
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its depth is shown in Figure 15(a). The beam is fixed in the longitudinal

direction at both ends but is free to move in the transverse direction due

to the constraints u = 0 and v = v(y). Using symmetry, the upper half of

the beam is modeled by: (1) one conventional element, and (2) one nodeless

parameter element.

Fiqure 15(b) shows the comparative transverse displacement distribu-

tions from an analytical solution (Reference 11), the conventional element

and the nodeless parameter element solutions. The conventional element

gives a relatively high error for both the nodal displacement and the dis-

placement distribution. The nodeless parameter element yields the exact

nodal displacement and gives an excellent representation of the displacement

distribution.

The stress distributions obtained from these finite element models are

compared with the analytical solution in Figure 15(c). The element stress

distribution predicted by the nodeless parameter element is in very good

agreement with the analytical solution. The conventional element is unable

to provide details of the nonuniform stress distribution. As mentioned

earlier, element centroidal stresses are not the correct estimates of the

true stresses in general. This phenomenon is clearly shown by this example

where the centroidal stress obtained from the conventional elements is

underestimated significantly.

3. Simplified Wing Section with Aerodynamic Heating

A simplified wing section (Figure 16a) consisting of metallic top and

bottom skins connected by corrugated spars is subjected to symmetrical, non-

uniform step-function representations of time-dependent aerodynamic heating.

The finite element discretization is based on a unit length of the wing sec-

55



Y y
h •T=1100(1-y2)

L

(a) Fixed end beam with nonlinear temperature distribution.

1.0 1 ANALYTICAL
Ar-----A CONVENTIONAL F.E.
e3----e NODELESS PARAMETER I.E.

-3v(y)x 10
in

0.5 -

0 0.5 1.0

y/h

(b) Comparative transverse displacement distributions.

Figure 15. Conventional and nodeless parameter finite element solutions
for a fixed end beam with nonlinear temperature distribution.
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Figure 15. Concluded.
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tion and models a one-dimensional transverse variation of temperature and

thermal stress. Three finite element models were used for the analyses.

The first model consists of seven linear elements (PT = PS = 1); two ele-

ments each for the top and bottom skins and one element for each spar. The

second model used a refined mesh with ten linear elements for each skin.

The third model is identical to the first model except quadratic hierarchi-

cal interpolation functions were employed for the thermal analysis (PT = 2)

and linear interpolation functions (Ps = 1) were employed for the struc-

tural analysis. The comparative corresponding skin temperatures at t = 150

s. are shown in Figure 16b, and the corresponding skin thermal stresses are

shown in Figure 16c.

For both temperature and stress, the hierarchical approach with PT = 2

and PS = 1 predicts realistic solutions and gives good agreement with the

results from the refined mesh of linear elements. The first model with

linear elements is unable to represent the nonuniform temperature and stress

distributions. But with the same discretization, the addition of the quad-

ratic interpolation functions for the temperature is clearly sufficient to

resolve the pertinent details of both the thermal and structural solutions.

4. Convectively Cooled Laser Mirror

Figure 17(a) illustrates a design concept of a convectively cooled

laser mirror. The mirror is subjected to high uniform specified surface

heating. To reduce stresses and deformations, the mirror is convectively

cooled by flow through multiple coolant passages. Using symiietry, the

finite element discretization shown in Figure 17(b) was established for a

preliminary thermal-stress analysis.

The thermal analysis was simplified by using a two dimensional model of
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(b) FINITE ELEMENT MODEL

Figure 17. ihermal-structural analysis of convectively cooled laser mirror.
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a mirror cross-section with specified coolant temperature. Steady-state

conduction with convection heat transfer to the coolant was analyzed. The

bottom mirror surface was assumed to be adiabatic, and the left and right

edges of the mirror have zero heat transfer by symnetry. Conventional bi-

* linear tiiermal elements (PT = 1) were used in the analysis. Temperature

distributions at four sections through the mirror are shown in Figure 18.

Since the temperatures obtained are relatively smooth, the conventional bi-

linear element model for the thermal analysis was sufficient and no addi-

tional refinement was required.

For the structural analysis, a state of plane strain was assumed. Two

finite element analyses with the same discretization as the thermal model

were performed. Conventional bilinear elements (Ps = 1) and hierarchical

biquadratic elements (Ps = 2) were used for the analyses. Figure 19 shows

comparative displacement distributions along the mirror surface. The hier-

archical elements (P = 2) provide a smooth displacement distribution

whereas relatively high discontinuities of displacement gradients are pro-

duced by the conventional elements (P = 1). Such discontinuities indicate

the need for mesh refinement if conventional elements are to be used.

Thermal stress distributions along the middle plane of the mirror are

shown in Figure 20. The conventional elements produce element stress dis-

continuities whereas a more realistic stress distribution is obtained from

the hierarchical elements. The thermal stresses from the hierarchical ana-

lysis show small discontinuities indicating that solution convergance is not

fully attained for PS = 2, suggesting the need for including additional

hierarchical terms. However, the principal advantage of using the hier-

archical elements is clearly demonstrated by this example. Enhanced dis-
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Figure 19. Comparative transverse displacement distributions
along mirror surface.
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placement and thermal-stress solutions were obtained for a common geometric

model.

6
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SECTION VI

CONCLUDING REMARKS

An integrated approach for enhanced thermal-structural analysis was

presented. The approach focuses on applications where thermal and structur-

al models often differ because of different analysis requirements. The e

objectives of the approach are to provide more efficient coupling between

the thermal and structural analysis and to improve the accuracy of each ana-

lysis particularly the thermal-stress analysis. The integrated approach is

based on usinq the same geometric model with a common nodal discretization

for both analysis although the thermal and structural models can employ dif-

ferent elements to suit their different requirements.

Two approaches for integrating finite element thermal and structural

analyses are presented. The first approach is based on applying the hier-

archical concept of finite element approximation to both the thermal and

structural analysis. In an hierarchical approach the accuracy of the finite

element approximation is improved for the same mesh by increasing the order

of interpolating functions and introducing additional unknowns via nodeless

variables. The hierarchical approach to integrated thermal-structural ana-

lysis uses a common discretization for the thermal and structural analysis

and seeks improvements in the accuracy of the thermal and structural analy-

ses by independently refining the solutions using hierarchical interpolation

functions for successive analyses. A key step in coupling the analyses is

to use the converged temperature distribution to compute the finite element

equivalent thermal forces. The second approach, called a nodeless param-

eter approach, uses a common discretization for both analyses and uses hier-

archical interpolation functions to converge the thermal solution. The
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structural analysis is based on using new temperature-dependent displacement

interpolation functions that have element temperatures as parameters.

Interpolation functions are presented for a rectangular element, and the

generalization for a quadrilateral is briefly discussed. The use of the new

4 interpolation functions can improve the accuracy of the structural analysis

without adding extra unknowns.

Four two-dimensional examples are presented to illustrate the two

approaches. Rectangular elements with bilinear interpolation functions are

used for the initial analyses, and refinements of the analyses are made

using the hierarchical approach or the nodeless parameter approach. Im-

provements in the accuracy of temperature and thermal-stresses were demon-

strated in all examples.

The hierarchical approach offers the greatest potential for developing

a general integrated thermal-structural analysis method. Maximum flexi-

bility is permitted for independently improving the finite element approxi-

mation for each analysis while maintaining a common discretization and the

analyses can be consistently coupled through the equivalent thermal forces.

Additional study is needed to: (1) gain experience with higher order inter-

polation functions, (2) develop error estimation techniques to quantify

convergance, and (3) study computer implementation techniques. The nodeless

parameter approach offers the advantage of improving the accuracy of the

structural analysis without adding unknowns. The approach, however, needs

additional development before it can be implemented for general elements.

The integrated thermal-stress analysis approach based on hierarchical

elements provides capability to improve accuracy and efficiency of thermal-

stress analysis of complex structures. The examples presented in this
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report validate some basic features of the approach for two-dimensional

thermal stress problems, but additional research is needed to develop the

approach to its full potential.
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LIST OF SYMBOLS

a Surface absorptivity

[BI Nodeless parameter strain-displacement interpolation
matr ix

[Bs] Strain-displacement interpolation matrix

[BT] Temperature gradient interpolation matrix

c Specific heat

[C] Finite element capacitance matrix

[D] Elasticity matrix

E Modulus of elasticity

{FT) Finite element nodal thermal force vector

{f T} Finite element nodeless parameter thermal force
vector

[k] Thermal conductivity matrix

[Kc] Finite element conduction matrix

[Kr] Finite element radiation matrix

[Ks] Finite element stiffness matrix

[N] Finite element interpolation function matrix

[N] Finite element nodeless parameter interpolation
function matrix

[Ns] Finite element displacement interpolation function
matrix

[NT] Finite element temperature interpolation function
matrix

PT Order of interpolating polynomial for thermal
analysis

PS Order of interpolating polynomial for structural
analysis

q Surface heating rate
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qr Surface incident radiation heating rate

{Qq} Finite element surface heating load vector

{Qr} Finite element radiation heating load vector

t Time

T Temperature

STref Reference temperature for zero stress

u, v, w Displacement components

V Vol uie

x, y, z Cartesian coordinates

[a} Vector of thermal expansion coefficients

{6} Vector of finite element nodal displacements

p Mass density

a Stefan-Boltzmann constant

c Surface emissivity

{E} Vector of finite element total strains

{Eo} Vector of finite element thermal strains

{a} Vector of finite element stresses

v Poisson's ratio

II Internal strain energy

Finite element natural coordinates
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